46 COMPUTE!

July, 1982, Issue 26

Test RAM
For Bad Bits,
Nondestructively

Lec J. Scanlon
Inverness, FL

In a recent article in this magazine (COMPUTE!,
April, 1981 #23) 1 presented a 6502 assembly
language program that tests the integrity of a
selected portion of RAM. That program was de-
signed to detect “dead” bits or bytes, pattern sensi-
tivity, crosstalk, and a variety of other error condi-
tions. It could also be used to detect soft errors, in
which the memory accepts the test data, but reverts
back to its previous state after some period of time.
As useful as it is, that program has one possible
shortcoming: it clobbers the contents of the portion
of memory being tested. Clearly, that doesn't matter
if you are just verifying a newly installed memory
board, but is unacceptable if a program or some
data is sitting within the test area. In this article, I
present another kind of program, one that per-
forms a nondestructive test on RAM memory. That
is, a program that alters memory, but subsequently
restores all locations to their previous (pre-
test) values.

The Test Algorithm
Essentially, the test program described here vah-
dates RAM by comparing the actual contents of
memory to the known data that should be contained
within it. T'o make this comparison, the program
uses a method that is often employed for testing
punched paper tape and read only memories
(ROMs) ~ the checksum. A checksum is that value
produced by taking the exclusive-OR of all bytes in
test memory (see box).

Briefly, here is the sequence of operations for
the test program:

1. Calculate a checksum value for the entire

range of test memory, by exclusive-ORing

all bytes.

2. Invert the state of the first bit in test memory

— Bit 7 of the “start” location — but leave all

other bits unchanged.

3. Calculate a new checksum value.

4. Invert the state of the altered bit position in
the new checksum.

5. Compare the new (altered) checksum with

the initial checksum.

6. The result of this comparison can cause
either of two things to take place:

If the checksums are different, the program
Jumps to an error routine, to print out the
bit position and address of the bad bit.

If the checksums are identical, the program

restores the state of the test bit — by rein-

verting it — then branches back o Step 2, 10

test the next bit (Bit 6 of the “start” location).
This process continues until all bits have been
tested, or until a mismatch is detected.

Will this nondestructive test program catch all
of the fault conditions that can be detected by the
previously published destructive test program?
Probably not all of them. The nondestructive test
program will not detect pattern sensitivity or soft
errors (unless you modify the program to include a
time delay), but it should be able to detect most
other types of errors.

Program Flowchart

Now that you understand what the test program
must do, and know kew the program will do it, it’s
time to look at the structure of the program itself.
This program is comprised of three parts: a main
program loop, a checksum calculating subroutine
and an error printout routine.

A tlowchart for the main program loop is
shown in Figure 1. As you can see, this flowchart is
nothing more than a detailed version of the algo-
rithm we defined in preceding Steps 1 through 6.
The program begins by calculating the byte count,
then calls the checksum subroutine (CHKSUM) to
generate the initial value of the checksum. This
done, the base address and byte index are initialized
to reference the first byte in test memory.

Next, the bit mask index is initialized to refer-
ence the most significant bit, Bit 7. With this initial-
ization out of the way, the program inverts the
current test bit. The first time through the loop,
this will be Bit 7 of the Start location. Now the

Figure 1: Nondestructive Memory Test Program

50 COMPUTE!

July, 1982, Issue 26

Figure 1, (cont’d)

proegram calls CHKSUM again, to get the checksum
for memory with one bit inverted, and inverts that
bit position in the checksum.

This invert operation should make the new
checksum identical to the initial checksum. If the
two checksums are not identical, the program
terminates by printing the bit position and address
where the error was detected. Otherwise, the pro-
gram reinverts the current test bit, to restore its
original state.

The remainder of the program involves a
series of three counter/index adjustment opera-

Figure 2: Checksum-Calculating Subroutine
(CHKSUM)

52 COMPUTH

July, 41982 Issue 26

tions, with each followed by a branch/no-branch
decision. In the first of these operations, the bit
mask index is decremented;; if it is nonnegative,
the program branches back to invert the next bit.
Otherwise, the byte count is decremented; if all
bytes have been tested, the program terminates,
error free. Otherwise, the byte index is incre-
mented. The byte index is eight bits long, and can
hold values from 0 to 255 (decimal). If the incre-
mentation caused the byte index to overflow to
zero, the program increments the high order byte
of the base address, then branches back to reinitial-
ize the bit mask index. Otherwise, the branch takes
place with no change to the base address.

Figure 2 shows the flowchart for the checksum
subroutine, CHKSUM. This subroutine is called
from two places in the program: (A) itis called at
the beginning of the program, to calculate the
initial checksum, and (B) it is called from within
the main loop, to calculate a new checksum after a
test bit has been inverted. This second source of
call requires the subroutine to maintain its own,
separate byte count and base address, so as not to
disturb the current values of these parameters in
the main program. In the flowchart, these “*working”
parameters are labeled cycle count and checksum base
address, respectively.

To stare, cycle count is set equal to initial byte
count, checksum base address is set equal to test
start address, and the checksum and byte index are
initialized to zero. The rest of the subroutine is just
one big loop. In this loop, the checksum is accumu-
lated, byte by byte, with intervening index and
cycle count adjustments. The loop is terminated
when all bytes have been processed; that is, when
cycle count has been decremented to zero.

The Test Program

Now that you understand the criteria of the pro-
gram and its sequences, we can look at the program
iself. Program 1 shows the source code for the
nondestructive test program, which was flow-
charted in Figure 1. Note that before executing the
program, the starting address must be stored in
locations 00 and 01 (00 holds low byte) and the
ending address must be stored in locations 02 and
03 (02 holds low byte).

Besides these four locations, the program uses
13 other zero page locations, as working storage.
These include six parameters that are used in the
main program — initial byte count (IBYTES), byte
count (BYTES), base address (BADDR), initial
checksum (CSUM) and temporary storage for the
Xand Y registers (SAVEX and SAVEY), and two
parameters that are used in the checksum subrou-
tine, a working copy of the byte count (CYCLES)
and a checksum base address (CBADDR). Of these

parameters, only IBYTES and CSUM remain
unchanged throughout the program; all six other
parameters will change during execution.

Following these reserve equates come three
equates that reference subroutines in the AIM 65
monitor: CRLOW initializes the display and printer
to their START positions; NUMA prints the con-
tents of the accumulator, as two ASCII digits;
OUTPRI sends one character to the print buffer.
Other 6502-based computers have equivalent
subroutines.

The actual code that follows is straightforward,
so you should have no problem following it if you
studied the flowchart in Figure 1. Some readers
may wonder why [chose to save X and Y in zero
page (locations SAVEX and SAVEY), rather than
on the stack, during the call to CHKSUM in the
main loop. There are two reasons why this was donc:

L. The instructions used to save X and Y in
zero page execute eight cycles faster than
those to save X and Y on the stack (12 cycles
versus 20 cycles). If you consider that for each
byte tested, CHKSUM is called eight times —
once for each bit position —saving X and Y in
zero page saves 64N microseconds for an N-
byte test run.

2. We need to use the checksum contents of
the accumulator upon return from CHKSUM,
and a pull from the stack (PLA) always loads
the stack information into the accumulator. If
the 6502 had the instructions PHX, PHY, PLX
and PLY, the stack would have been the likely
place to hold X and Y, but unfortunately it has
no such instructions.

Programmers may also be interested in the
way the bit masks are accessed by the EOR
BMASK, X instructions that follow the labels
INVERT and NXTBIT. The bit mask table,
BMASK (shown at the end of Program 2}, is ar-
ranged by ascending bit position. That is, the mask
for Bit 0 comes first, followed by the mask for Bit
1, and so on. However, this table is accessed in
descending order; Bit 7 is tested first and Bit 0 is
tested last. This allows us to initialize the bit mask
index to 7 (LDX #7 at label IBMSK), then decre-
ment this index until it goes negative. Otherwise,
working with a descending table and an incre-
menting index, the program would have to include
a CPX #8 instruction 1o make the done/mot done
branch decision. By using the ascending table and
decrementing index approach we've eliminated
that compare instruction. Since the CPX #8 in-
struction executes in just two cycles, the difference
in approaches is not significant, but the backwards
access is a handy gimmick for your programming
bag of tricks.

54 COMPUTE!

July. 1982, 1ssue 26

Program 2 shows the code for the checksum
calculating subroutine, CHKSUM, which was
flowcharted in Figure 2. It follows the flowchart
closely, and needs no additional explanation. Pro-
gram 2 also includes the previously mentioned bit
mask table, BMASK, and the text for the er-
ror message.

This program will produce one of two mes-
sages. If the test memory is error free, the message
OKAY! will be printed, otherwise an error message
of the form BIT n OF LOC. anaa will be printed. In
the error message, the bit position and address that
are printed identify the bit that was being tested
when the checksum mismatch occurred. It's possi-
ble, of course, that inverting that bit actually caused
some other bit in the memory to be inverted, due
to crosstalk, so the printout position may not be the
actual culprit. One way of finding out is to run a
second test, starting at the location following the
printout location; that is, rerun the test starting
at “aaaa+ 1.”

Execution Times For The Test Program

As you can see from the listings, the program
occupies slightly less than a page of memory: to be
exact, it occupies 245 bytes. Of even greater signifi-
cance, however, is the amount of time it takes to
execute. That is, the amount of time it takes to test
a selected portion of memory. In a test that [ran,
the program took just over four minutes to check
out a 1K portion of memory (1024 bytes).

At first I suspected that something was wrong
with the program, but after a few calculations I
became convinced that this was indeed a respectable
time, in light of what the program was doing. First,
consider that in a 1K byte test, the CHKSUM sub-
routine is called 8193 times; once to get the initial
checksum, then once more for each of the 8192 bit
positions in the 1024 byte test memory, The
CHKSUM subroutine takes 28 + (29 x Ny eveles to
calculate the checksum for an N-byte memory, so it

takes 29,724 cycles (mlumcumds) fora 1024 byte
memory. (‘rankmg out the math, we find that with

For cach b;t posmon i ‘Whu:h the me'
ands areth

| Kaugh) o b;: znwﬂwf buc
has lefrthe four high: drder bus 4 throurrh :
i intac = 7 S

bits unchanged IT!
1 r.hls art:cle uses the

July, 1982, Issue 26

COMPUTE 55

8193 calls, the program spends about 4.06 minutes

in the CHKSUM subroutine!

Since the program is spending virtually all of
its time in the CHKSUM subroutine, the total

execution time of the program is directly dependent
on the efficiency of this subroutine, If any readers
have suggestions on how to streamline CHKSUM,
I'd be happy to hear from them.

Program 1:
LINE#

01-0010
01~-0020
01-0030
01-0040
01-0050
01-0060
01-0070
01-0080

01-0100

01-0120
01-0130
01-0140

01--0140

01-0180
01-01%0
01-0200
01-0210
01-0220
01-0230
01-0240
01-0250

01-0270

01-02%90
01-0300
01-0310

01-0330
01-0340

01-0350
01-0360
01-0370
01-0380
01-03%90
01-0400
01-0410
01-0420
01-0430
01-0440
01-0450
01-0460
01-0470
01-0480
01-04%0
01-0500
01-0510
01~-0520
01-0530
01-0540
01-0550

Source Code for Nondestructive Test Program

ADDR

2000
2000
2000
2000
2000
2000
2000
2000

2000

2000
0000
elelege]

0004

0004
0004
0008
000A
0Q0C
000E
QO00F
0010

0011

¢011
0011
0011

0011
¢200

0201
0203
0205
0207
0209
020B
020D
020F
0211
0213
0215
0217
oz1%
0218
021E
0220
ozaz
0224
0224
o228
o224

OBRJECT

LAREL

- ws e e ms ws B €D

-

SOURCE FAGE 0001

THIS FROGRAM FERFORMS A NONLDESTRUCTIVE TEST

ON RAM MEMORY» RY CALCULATING A SERIES OF CHECKSUMS.
BEFORE EXECUTINGy STORE THE STARTING ADDRESS

AT LOCS. 00 AND Oly AND THE ENDING ADDRESS

AT LOCS, 02 AND 03,

IF THE TEST IS SUCCESSFULy AN
18 PRINTYED. OTHERWISE, THE BAD
AND ADDRESS ARE FRINTED.

"OKAY!® MESSAGE
BIT FOSITION

USER-SUFFLIED FARAMTERS

38

AS
ES
85
85
AS
ES
85
85
Ee
Eé
oo
Eé
Eé
20
85
AS
83
AS
83
AQ

A2

0z
00
04
064
03
01
05
07
04
06
04
0%
07
Ei
OE
00
oA
01
OB

00
07

o2

k=0
START kX422 i STARTING ADDRESS
END Fa=k42 # ENDING ADDRESS

3 EQUATES FOR WORKING STORAGE IN ZERO FAGE

IBRYTES Xex+2 # INITIAL EBYTE COUNT

BYTES ¥=%+2 # BYTE COUNT

CYCLES X=X%+2 i WORKING COFY DF BYTES

BADDR k=%+2 # BASE ALDRESS

CRADDR k=x%+2 # BASE ALDRESS FOR CHECKSUM SUER.
CSuM *=%+1 # INITIAL CHECKSUM

SAVEX k=¥+1 # TEMF., STORAGE FOR X REGISTER
SAVEY k=Xk+1 i TEMF. STORAGE FOR Y REGISTER

5 ATM 65 MONITOR SUBROUTINES

CRLOW
NUMA
OUTPRI

GETSUM

IBMSK

=%EA13
=%EA4S
=%F000

*=4$200
SEC

LA
SEC
5ThA
STA
LA
SRC
STA
8TA
INC
INC
BNE
INC
INC
JER
5TA
Lna
5TA
LDA
5TA

Loy
LDX

END
START
IBYTES
BYTES
END+1
STARTH1
IBYTES+1
EYTES+H1
IBYTES
BYTES
GETSUM
IBYTES+H1
BYTES+1
CHKSUM
CSUM
START
BADDR
START+1
BADDR+1

0
37

- %

- o e

RESET DISFLAY & FRINTER
FRINT Ay AS TWO ASCII CHARS.
OQUTFUT A& TO PRINT EBUFFER

BYTE COUNT = END ADDR. - START

ADDR. + 1

CALEULATE INITIAL CHECKSUM
AND SAVE IT IN MEMORY
BASE ADDRESS = START ADDRESS

BYTE INDEX = 0
BIT MASK INDEX = 7

56 COMPUTH July, 1982, Issue 26

01-0560 022C B1 0A INVERT LDA (BADDR)sY 3 INVERT NEXT BIT IN MEMORY

01-0570 (Q22E 5D DF 02 EOR BMASKs X

01-0580 0231 91 0A STA (BADDR) Y

01-0590 0233 86 OF 8TX SAVEX P SAVE X AND Y IN MEMORY

01-04600 0235 84 10 8TY SAVEY

01-0610 0237 20 Bl 02 JGR - CHKSUM § CALCULATE NEW CHECKSUM

01-0620 023A A6 OF LIX SAVEX # RETRIEVE X AND Y

01-04630 023C A4 10 LOY SAVEY

01-0640 O23E SO0 DF 02 EOR RMASKyX # INVERT TEST BIT IN NEW CHECKSUM

01-0650 0241 C5 OE CMF CSUM i NEW CHECKSUM = INITIAL CHECKSUM?

010660 0243 [0 39 BNE ERROR i NO. PRINT ERROR INFO.

01-0670 0245 Bl 0A NXTRIT LDA (BADDR)yY i YES. TINVERT TEST BIT IN MEMDRY

01-0680 0247 5D DOF 02 EOR BMASK»X

01-06%0 02494 91 0A STA (BADDR)sY

01-0700 024C CA DEX # NO. DECREMENT RIT MASK INDEX

01-0710 024D 10 LD BPL INVERT f BIT MASK INDNEX NEGATIVE?

01-0720 024F Cé 06 DEC BRYTES ¥ YES. DECREMENT BYTE COUNT

01-0730 0251 E4 04 CPX RYTES

01-0740 0253 DO 02 ENE BCNTO

01-0750 0255 Cé6 07 DEC BYTESG+1

01-0760 0257 A6 06 ECNTO LDX RYTES # BYTE COUNT = 07

01-0770 0259 DO 1R ENE INCIDX

01-0780 O025R A6 Q7 LIOX BYTESH!

Q10790 0250 O 17 BNE INCIIIX

01-0800 025F A0 00 LOY #0 i YES. ALL DONEr WITH ND ERRURS

01-0810 0261 BY? 70 02 OKL.OOF LIdA DKMSG»Y

Q1-0820 0264 20 00 FO JBR DUTFRI

01-0830 0267 (8 INY

01-0840 0268 CO 04 CFY #6&

01-0850 026A DO F9 ENE DKLOOF

01-0860 026C 20 13 EA JSR CRLOW

01-0870 0246F 00 ERK

01-0890 0270 20 4F OKMB6 JBYT 7 OKAY!~

01-0910 0276 C8 INCIDX INY F NO, INCREMENT BYTE INDEX

01-0920 0277 DO Bl BNE TBMSK # BYTE INDEX=07

01-0930 0279 Eé& OB INC BADDRY1 # YES. AID 256 TO BASE ADDRESS

01-0Q?40 027B 4C 24 02 JMF IBMSK

01-0950 027E

01-0970 0Q27E # THIS ROUTINE FPRINTS OUT THE BIT FOSITION

01-0980 027E ¥ AND ADDRESS AT WHICH THE MISMATCH OCCURRED

01-1000 027E 20 13 EA ERROR JSR CRLOW i3 RESET DISFLAY & PRINTER

01-1010 02B1 AQ 00 LIY #0 # PRINT FIRST FART OF TEXT

01-1020 0283 R? E7 02 LODF1 LDA EMSGeY

01-1030 0286 20 00 FO JSR OUTFRI

01-1040 0289 C8 INY

01-1050 028a CO 05 CFY #5

01-1060 028C DO F5 ENE LDOP1

01-1070 02BE BA TXA # PRINT BIT FATTERN

01-1080 O02BF 09 30 ORA #3300

01-1090 0291 20 00 FO JSR OUTPRI

01~1100 0294 RY? E7 02 LOOF2 LDA EMSG,Y # FRINT SECOND FART OF TEXT

01-1110 0297 20 00 FO JER OUTFRI

01-1120 0294 (8 TNY

011130 029F CO CE CRY #14

01-1140 0290 DO F3 ENE L0DOP2

01-1150 02%9F A5 10 LI}A SAVEY i ERROR ADDRESS = BASE ADDRESS +
INDEX

¢l1-11640 02A1 18 cLC

01~1170 02A2 &5 0A AC BADDR

01-11BC 02A4 4B FHA

01-11%0 02AS A2 00 L.DA ¥0

Q1~1200 02a7 &5 Ok ADC BADDR+1

Q1-1210 Q2A% 20 46 EA JER NUMA # FRINT ERROR ADDRESS

July, 1982, bsue 26 COMPUTE! 57

QAL 48 FlL.A
Q2A0 20 46 EA JER NUMA
02RO 00 RRK i RETURN TO MONITOR

Program 2: Source Code for CHKSUM Subroutine

LINE# ADDR ORJECT LAREL SOURCE FAGE 0004
011260 02B1 i THIS SUBRRDUTINE ACCUMULATES THE CHECKSUM»
01-1270 02B1 ioBY EXCLUSIVE-ORING ALL BYTES
01-1290 O02EB1 A5 04 CHRSUM LDA IRYTES i CYCLE COUNY = BYTE COUNT
01-1300 0O2BI 8Y 08 STA CYCLES
01-1310 02BS AT 03 LbA IRYTES+]
01-1320 02B7? B85 09 STA CYCLESH1
Q1-1330 O02R? A5 00 LIA START i BASE ADDRESS = STARY ADDRESS
01-1340 O02BE 85 OC STa CRADDR
01-1350 02BL A5 01 LA START+H1
01-1360 O02BF 85 0D STA CBADDR+1
¢1-1370 02C1 A% 00 L.DA %0 i CHECKSUM = 0
01-1380 0203 A0 00 LY #0 ¢ BYTE INDEX = 0
01-1390 02C5 S1 OC ACCUM EOR (CRADDR) Y $ CHECKSUM = CHECKSUM EOR NEXT RYTE
01-1400 02C7 (8B INY § INCREMENT INDEX
01-1410 02C8 10 02 ENE DECCYC # INDEX = 07
01-1420 02CA E& OD INC CEADDR+1 §oOYES. ADD 256 TO BASE ADDRESS
01-1430 02CC A2 FF DNECCYC LIDX #&FF § NO. DECREMENT CYCLE COUNT
G1-1440 O2CE Cé 08 DEC CYCLES
01-1450 0200 E4 08 CEX CYCLES
01-1460 0202 10 02 BNE CYCZ
01-1470 0204 Cé 09 DEC CYCLES+1
Q1-1480 O2D6 Aé 0B CYCZ LDX CYCLES 3 CYCLE COUNT = 07
01-14%¢ 0208 N0 EH ENE ACCUM 5 ND., GO PROCESS NEXT RYTE
01-1500 02DA Aé6 O LOX CYCLES+H1
01-151¢ 02DC DO E7 BNE ACCUM
01-1520 02DE 60 RTS # YES., RETURN WITH CHECKSUM IN A
01~1550 O02DF i MASBKS USED TO INVERT BITS IN MEMORY
01-1570 02DF 0t EMASK LBYY 1y2r4rBy$10y3202%540+%B0

01-1570 C2EQ 02
01-1570 O02E1 04
01-1570 02E2 08
01~1570 O2E3 10
01-1570 02E4 20
01-1570 O2ES 40
01-1370 02Eé 80

01-1590 OR2E7 # ERROR HMESSAGE TEXT
01-1610 O0O2E7 20 42 EMG0 fBYT 4 RIT ¢
01-1620 0O2EC 20 4F +BYT 7 OF LOoC.
01-1630 0O2IFS +END

ERRORS = 0000

END OF ASSEMELY = 02Fa

Dedlers — Reserve your copies of
COMPUTE!s first Atari and PET/CBM books
foday. Call 919-275-9809 for ordering information,

32

COMPUTE,

Universal 6502 Memory Test Cal W. Moser

This article contains a memory test progtam which tests RAM
memory in various 6502 based systems. This test was developed
after using several tests which did not perform a complece test. The
problem areas were untested chip selects and address line inputs.

The program performs twa tests:

Test I: Tests memory cells for storage retention, and open,
shorted, or non-functioning data and Ao-An address
lines. This is done by wriring 03011 ... FF 00011 .., FF
continually throughout the memory range for the first
pass. When this has been written, it is checked to vali-
date the data. On the next pass 0102 ... FFQ0 Q11 ... FF
is written and checked. This continues for 256 (hex FF)
passes uncil all possible combinations of bit patterns
have been used.

Test 2: Tests the RAM chip select inputs. This is the same as
test 1 except data 0001 ... F200 01 ... F2 is used. The
purpose of this test is to test the remaining Ag-Ays
address lines. Listings 1 (originating at memory address
$0002) and 2 (originating at $0800) contain the source
of the memory test program. The reason for chese two
listings is that not all 6502 microcomputers have RAM
at a common address from which the memory test pro-
gram can execute. To determine which listing is appro-
priate for your system, consult table A. Next enter the
object code from the appropriate listing, and then con-
figure the /O for your system, also from table A.

Enter the start address and end address of the memory range

to be tested as described in table B. Execurion begins with test | ar
$0002 for Listing | and $08CC for Listing 2.

When test | runs to completion, a break instruction will be exe-
cuted to enter your systems monitor program. Register A will con-
wain El indicating end of test 1. To execute test 2, simply continue
execution by ryping G to your monitar.

If errors occur, they will be of the same form as described
above. When test 2 has run te completion, a break instruction will
again transfer conrrol to your monitor and register A will contain
EZ signifying rhe end. To conrinue execution again ar test 1, simply
type G. The start and end address range is not altered by the mem-
ory test program.

Herrors occurred in rest 2 but not in test 1, you can safely as-
sume a chip select malfuncrion (possible stuck in enable stare or
malfunction with circuitry which generates che chip select) or an
address line other than Ay-A;. Usually a number of errors will occur
in test 1 when the fault is a single defective address inpur, dara in-
put, or data output.

1f a continuous sequence of addresses with errors occur, the
problem is likely to be an open data input or a data output stuck ac
1"or .

If errors occur every 2nd, 4th, 8th, 16th or some power of 2

address seguence, check for defective address inputs as follows:
Data bit Check Data bit Check
witherror addressinput witherror address input
Do Agor Ay D, Asor Ay

D, Ay or Ay Dy Asor Ay,

D; Azor Ay, Dy Agor Ay

D, Ajor Ay D Ajor Ags

7
If, for example, you are checking 2102's (£x1K) and are specify-
inga 4K range of memory and an error common to the whole range
occurs, the problem is likely to be in the power leads, defective daca
or address buffers, stuck at*0" address inputs, stuck at ‘0" data

inputs, or stuck at ‘0’ data outpurs.

In all of the above, you may have to examine the various mem-
ory error patterns for some similarity in order to isolate the defective
component. This is especially true of the 1x1K 2102, and 1x 16K
4116 memory chips where each chip is devated to a particular data

tead (Dg-D;).

If an error occurs, it will be outputted in the following format:
Address Test Pattern Error
XXXX Yy Iz
Note: This program performs a lengthy bur exhaustive test of RAM memary.
it rakes appraximacely 38 seconds per 1K of memory for each test | and rest
2

MCS 6502 MEMORY TEST

TE 7 EERG PAGE LOCATIONS
TEST 2 ADDRS .DE @ ;2 BYTES - ADDRESS OF
MEMORY
$8002 OR .DA SBBO4Y
0800~ A2 oe POB2- A2 @80 0168 MEMCTEST 308
P802- BE E2 04 BBR4- BE E4 80 170 TEST<TYPE ; TEST 1
DBB5- 2¢ 1B 8§ 0@8C7- 20 1D 0@ BlBE TEST<PGH
2808- A EL #00A- A9 E1 2190 #3E1
nBaA~ BB apgc- of z200
(80G- EA 900D~ EA 3218
G80C- EA Q00E- EA 1220
B80D- EE E2 #8 @00F- EE E4 07 2230 TEST<TYPE ; TEST 2
pB18- 2¢ 1B @g B012- 29 1D 82 @249 TEST<PGH
BB13- A9 E2 0¢15- a9 E2 9250 25E2
8815~ 0@ 2417~ 88 9262
BBl6- En 8318- EA 0278
2817~ EA 9919~ EA 8280 HOP
9818~ 4C 08 0 99lA- 4C 02 20 0299 JMP MEM<TEST
8386
@81B~ 20 C9 DE BOlD- 20 CB Q¢ B316 TEST<PGM JSR CRLF
281~ AQ 90 DE20- A 08 9328 LDY #50¢ ; PATTERM REGISTER
0820~ A2 4D BE22- A2 B B33¢ LDX #5080
8822- 82 El 06 0024~ BE E3 @8 B3df STX TEST<PATRN
PB25- 4C 2E 08 @827- 4C 38 00 B350 JMP NX<PASS
8360 ;
0828- EE E1 B8 @B2A~ CE E3 B0 9370 NX<PATRN INC TEST<PATRN
0928~ p@ 01 B02D- D@ 01 elge BNE NX<PASS
282D~ 6P ed2r- 60 £330 RTS
082E- AC El @43 B@3@- AC E3 86 0400 NX<PASS LDY TESTCPATRN
8831~ 28 9F @3 €033~ 20 Al 0@ 2410 ISR TNI<CADDRS
8834~ 98 £036- 98 8430 LOOPL TYA
0835~ 81 B0 @837~ Bl @ 6430 S5TA (ADDRS,X) : STORE PATTERN
@837~ ¢l @@ 0039~ 1 2@ L] CMP {ZDDRS,X) : CHECK
8835~ F0 @3 9038~ FO 32 B4so BEQ NO<ERR]
9838~ 29 81 06 0B3D- 28 B3 A0 Q460 JSR ERROR ; ADDRS, R{A], {(ADDRS,X)
0B3E~ 20 6E @8 0B4D- 20 70 89 @470 NOCEAR1 JSR INCCADDRSC
6841- PO €6 0843~ ro g6 [L3:13 BEQ CE<PATRN
0843~ 28 61 BB 0045~ 20 63 BO 0459 JSR INCCRY
9B46- 4C 34 DB BBAE- 4C 36 90 3@ Jmp LOOPL
8518 ;

#849- AC E1 BB ggda— AC E3 06 8520 CR<PATRN LDY¥ TEST<BATRN
EB34C- 28 SF B8 4E- 26 Al 08 9538 JER INI<ADDRS 3 INITIALIZE ADDRS
884F- 93 9es1- 93 2540 LOOP2 TeA ’

@858~ C1 B8 0852~ C1 60 8550 CHP (ADDRS, X}

28D4-
8407~
B8D9~
aanc-

980D~
08DF-

UBEL-
GBE2-
98E3~

EE

AD
60

48
AS

A
20
29
68
20

Al
2e
28
60

AD
85

85
68

A9
28
A9
2
€2

e
AS
e
6e

21
(i1}
D4
N
DA

<9

D7
22
BD

113
es
B8

a8

08
0B

08
L)

08
oa

as

(1]

as

48
R8s

33

Enter at ROM LINK:
Use 00C2 for Listing 1
Listing 08CO for Listing 2
2 20D2 FF
2 0980 20EDFD
lor2 2063 A6
1 20 A0TE
lor? 200672
2z 200BFE
2 20A5FC
1 2
? ?

-

7

Listing 1 Listing 2

Q0DF 08DD
DOEC 08DE
00E1 08DF
00EZ 08EQ
0002 0800

¢Bs4- FO 93 8560 BEQ HOERRZ
0656- 28 83 08 8579 JSR ERROR ; ADDRS,R{A),{ADDRS,X)
0E59- 2@ 63 @9 0580 NOCERRZ JSR INCCRY
035C- 28 70 8@ 8530 JSR INC<ADDRSC
ge5F- DY F@ 0600 BNE LOOP2
P61~ FB C7 g6l BEQ NX<PATRN
0963~ C8 0646 TNCKRY nY
0264~ AD E4 BB 0650 LDA TEST<TYPE
V067~ FO 06 0666 BEQ ERITL
ggga- ce Fi 0670 Ce¥ #SF3 ; RESET R{Y) TO CHECK
B- 90 02 0680 BCC EXITL .
936D~ AG @B 0690 LDY 500 EHIE SELECTS
086F~ 60 8700 EXITI RTS
8710
0728 5
8370- £6 40 3730 INCCADDRSC INC ¥ADDHS
0272~ DO 92 8740 BNE SHIP<HT
0074~ E6 41 8750 INC *ADDRS+531
§976- AD E1 @0 0760 SKIP<HI LDA END
#0879~ ¢5 20 a778 CNP *ADDRS
6878~ DI €5 9760 BNE EXIT2
687D AD £2 @8 0790 LDA END+581
60B0- €5 E1 B8ED CMP *ADDRS+§01
oBB2- 60 8810 EXITZ RTS
5640 yOUTPUT THE ERROR; ADDRESS, PATTERN, ERROR
6a83- 48 8850 ERROK PHA
0284~ AS 01 98690 LDA “ADDRS+$B1
p386- 24 AC @0 OB7Q JSR TRYT ; OUTPUT ADDRS HI
#089- AS 80 8888 LDA *RDDES
§288- 20 AC 00 D890 JSR TBYT ; OUTPUT ADDRS LO
0ZBE- 2¢ D6 A0 0908 3SR SPACE2
¢091- 68 8910 PLA
8892~ 20 AC @D 0928 3SR TBYT : OUTPUT PATTERN
8895~ 22 D6 @0 P93P JSR SPACE2
9988~ Al 80 5949 LDA (ADDRS,X}
809A- 20 AC 00 D950 JSR TBYT ; OUTPUT ERROR IN MEMORY
929D~ 26 CB @0 296D JSR CRLF
00A0- 6F a37¢ RTS
@380 ; 5
9350 | TABLEA
1060 ; INITIALIZE ADDRS WITH START
9aAl- AD DF P2 1610 INI<ADDRS LDA START
00A4- 85 00 1020 STA *ADDRS
0pA6- AD E@ OF 1030 LDA START+§01 Computer
BeA9- 85 61 1040 STA *ADDRS+§01 PET
8¢AB- 60 1059
1960 ; APPLE Il
1870 S
10808 ;ROUTINE TO OUTPUT A BYTE SYM
20AC- 48 1898 TaYT BHA KIM
BOAD- 42 1100 LSR A
BOAE- A 1118 LSR A ﬂéﬂ
BOAF- 4A Hga LSR i; QSI 65D
POBE- A b LSR A T S
aaml- 20 BS 94 1140 JSR NIBBLE Western Dara Systems
80B4- £8 1150 LA ATARL
agB5- 29 IF 1150 NIBBLE AND £5OF AIM
aes7- 89 38 1170 CRA £539 o
aoBo- 3 3 1189 cHP £53A Super KIM
agpE- 90 B2 1194 BCC WRITE
A9BD- 69 86 1208 ADC #506
1214
1220 ;ROUTINE TO WRITE AN ASCII CHAR.
@OGF- BC E5 86 1239 W STY SAVEY
80C2- EA 1240 ROM.LIKE NOP
€0C3- EA 1250 HoP
00C4- ER 1260 NOP
60C5- £A 1278 NOP
00C6- EA 1284 NOP TABLEB
BACT~ AC E5 €0 1230 LDY SAVEY
gach- 6B i3ee = Start Address lo
1310
1328 ;ROUTINE TO ou'riyévg CRLF Start Address hi
00CB- A9 0D 1339 CRLF LDA #50D p
00CD- 20 BF #8 1348 JSR WRITE End Address lo
#8DB- A3 OR 1358 LDA #50A End Address hi
:gg;_ ég Briee ﬁ'gz JSR WRITE Execution Address
1380
1399 ;SPACE2 = OUTPUT 2 SPACES
1480 ;SPACE = OUTPUT 1 SPACE
80D6- 20 DY BF 1410 SPACE2 JSR SPACE
pDa- A9 28 1420 SPACE LDA '
@@ps- 22 BF 0B 1430 JSR WRITE
#ODE- 61 1440 RTS
1450
1460
08DF~ 1470 START .D§ 2 ;USER ENTERS START OF WEMORY RANGE
POEl~- 1488 END .DS 2 ;USER ENTERS END OF MEHORY RANGE
1498
POE3- 1500 TESTSPATRN .08 1 SCURRENT TEST PATTERN
B0E4- 1518 TESTCTYPE .DS 1 t=k,2 FOR TEST TYPE
BAES- 1528 SAVEY .05 1 {SAVE R{Y¥}
1538
1548
1550 END.PGM .EN

Statement 140: $0002 For Test |
$O800 For Test 2

Universal 6502 Memory Test
EASTERN HOUSE SOFTWARE
Carl W, Moser

3239 Linda Drive

Winston-Salem, NC 27106

